LAKSHYA (JEE)

Electric Charges and Field

1. There are two charges +1 microcoulombs and +5 microcoulombs. The ratio of the forces acting on them will be
(a) $1: 5$
(b) $1: 1$
(c) $5: 1$
(d) $1: 25$
2. Four charges are arranged at the corners of a square $A B C D$, as shown in the adjoining figure. The force on the charge kept at the centre O is

(a) Zero
(b) Along the diagonal $A C$
(c) Along the diagonal $B D$
(d) Perpendicular to side $A B$
3. A total charge Q is broken in two parts Q_{1} and Q_{2} and they are placed at a distance R from each other. The maximum force of repulsion between them will occur, when
(a) $\quad Q_{2}=\frac{Q}{R}, Q_{1}=Q-\frac{Q}{R}$
(b) $\quad Q_{2}=\frac{Q}{4}, Q_{1}=Q-\frac{2 Q}{3}$
(c) $\quad Q_{2}=\frac{Q}{4}, Q_{1}=\frac{3 Q}{4}$
(d) $Q_{1}=\frac{Q}{2}, Q_{2}=\frac{Q}{2}$
4. Three charges $4 q, Q$ and q are in a straight line in the position of $0, l / 2$ and l respectively. The resultant force on q will be zero, if $Q=$
(a) $-q$
(b) $-2 q$
(c) $-\frac{q}{2}$
(d) $4 q$
5. Two small conducting spheres of equal radius have charges $+10 \mu C$ and $-20 \mu C$ respectively and placed at a distance R from each other experience force F_{1}. If they are brought in contact and separated to the same distance, they experience force F_{2}
.The ratio of F_{1} to F_{2} is
(a) $1: 8$
(b) $-8: 1$
(c) $1: 2$
(d) $-2: 1$
6. An infinite number of charges, each of charge $1 \mu \mathrm{C}$, are placed on the x-axis with co-ordinates $x=1,2,4,8, \ldots \infty$. If a charge of $1 C$ is kept at the origin, then what is the net force acting on $1 C$ charge
(a) 9000 N
(b) 12000 N
(c) 24000 N
(d) 36000 N
7. A charge q is placed at the centre of the line joining two equal charges Q. The system of the three charges will be in equilibrium, if q is equal to
(a) $-\frac{Q}{2}$
(b) $-\frac{Q}{4}$
(c) $+\frac{Q}{4}$
(d) $+\frac{Q}{2}$
8. Two charges of value $2 \mu \mathrm{C}$ and $-50 \mu \mathrm{C}$ are placed 80 cm apart. Calculate the distance of the point from the smaller charge where the intensity is zero
9. Three charges of respective values $-\sqrt{2}$ $\mu \mathrm{C}, 2 \sqrt{2} \mu \mathrm{C}$ and $-\sqrt{2} \mu \mathrm{C}$ are arranged along a straight line as shown in the figure.

Calculate the total electric field intensity due to all three charges at the point P .

ANSWERS

1. (b)
2. (c)
3. (d)
4. (a)
5. (b)
6. (b)
7. (b)
8. $\quad(20 \mathrm{~cm})$
9. $\mathrm{E}_{\text {net }}=16.46 \times 10^{3} \mathrm{~N} / \mathrm{C}$,Direction of net electric field is perpendicular and away from the line AB .

Note - If you have any query/issue

Mail us at support@physicswallah.org

