LAKSHYA (JEE)

Electric Charges and Field

DPP-08

1. A very long uniformly charged wire oriented along the axis of a circle of radius *R* rests on its center with one of the ends. The linear charge density on the wire is λ . Evaluate the flux of vector \vec{E} across the circle area.

2. Calculate the total electric flux through the paraboloidal surface due to a uniform electric field of magnitude E_0 in the direction shown in

- 3. A uniform electric field $a\hat{i} + b\hat{j}$ intersects a surface of area A. What is the flux through this area of the surface lies (a) in the *y*-*z* plane, (b) in the *x*-*z* plane, (c) in the *x*-*y* plane.
- 4. Find out the flux through the curved surface of a hemisphere of radius *R* if it is placed in a uniform electric field *E* as shown in figure.

5. In figure, a cone lies in a uniform electric field *E*. Determine the electric flux entering the cone.

- 6. A cube of side *l* is placed in a uniform field \vec{E} , where $\vec{E} = E\hat{i}$. The net electric flux through the cube is
 - (a) Zero (b) $l^2 E$ (c) $4l^2 E$ (d) $6l^2 E$
- 7. A cube of side 2cm is placed in a region of electric field 120 N/ C. Calculate the electric flux through the
 - (a) Top face
 - (b) Bottom face
 - (c) Right face
 - (d) Left face
 - (e) Net flux

8. An infinitely long uniform charge distribution of charge per unit length λ lies parallel to the y-axis in the y-z plane at $z = \frac{\sqrt{3}}{2}a$. If the

magnitude of the flux of the electric field through the rectangular surface ABCD lying in the x-y plane with its centre at the origin is

 $\frac{\lambda L}{d}$ then the value of *n* is.

9. Electric flux through a surface of area 100 m^2 lying in the *x*-*y* plane is (in V-m) if

	$\vec{E} = \hat{i} + \sqrt{2}\hat{j} + \sqrt{3}\hat{k}$		
(a)	100	(b)	141.4
(c)	173.2	(d)	200

10. A hemisphere of radius R is placed in electric field as shown in figure. Total outgoing flux is

support@physciswallah.org

ANSWERS

- 1. $\frac{\lambda R}{2\epsilon_0}$
- 2. $E_0 \pi r^2$
- **3.** (a) Aa, (b) Ab, (c) Zero
- $4. \qquad \phi_{\text{curve}} = E\pi R^2$
- 5. *ERh*
- **6.** (a)
- 7. (a) Zero, (b) Zero, (c) $\phi = 0.048 \text{ Nm}^2 \text{ C}^{-1}$, (d) $\phi = 0.048 \text{ Nm}^2 \text{ C}^{-1}$, (e) zero
- **8.** (6)
- **9.** (c)
- **10.** (a)

Note - If you have any query/issue

Mail us at support@physicswallah.org

